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The lattice dynamics of ®ve compounds with the caesium chloride structure have

been investigated using shell models. Debye±Waller factors for these

compounds are calculated over the temperature range from 1 to 1000 K and

the results are presented analytically in a polynomial form. When experimental

results are available, the calculated results are compared to the experimentally

measured Debye±Waller factors and typically the discrepancies between these

factors are less than 10%.

1. Introduction

The Debye±Waller factor, which describes the effect of the

lattice vibrations on diffracted-beam intensities, is among

the few parameters that one must know in order to

perform dynamical electron diffraction calculations (Peng,

1999). The Debye±Waller factors are, however, not readily

available for most crystals. Experimentally, the Debye±

Waller factors may be measured using inelastic neutron

and X-ray diffraction techniques (Willis & Pryor, 1975).

However, the experimental results are normally published

for only a few temperatures, such as for room tempera-

ture, while in many applications it is desirable to have the

Debye±Waller factors at different temperatures. It is the

purpose of this paper to obtain temperature-dependent

Debye±Waller factors for compounds with the caesium

chloride structure. Our evaluations of the Debye±Waller

factors are based on the harmonic approximation of the

lattice dynamics, assuming that the forces between pairs of

atoms in a crystal are proportional to their relative dis-

placements. While this approximation is valid at low tempera-

ture, it is well known that a crystal with harmonic interatomic

forces would have no thermal expansion, no temperature

dependence of the elastic constants and many other proper-

ties not possessed by real crystals. We expect that our

harmonic results will become less accurate as temperature

increases. These results will nevertheless provide a starting

point for structural re®nements and for assessing, among

other things, the anharmonicity and dynamic deformation

effects.

In a previous paper (Gao et al., 1999), we have calculated

the Debye±Waller factors of 19 compounds with the sodium

chloride structure. The present paper is a sequential work to

investigate the lattice dynamics of compounds with the

caesium chloride structure and to calculate the temperature-

dependent Debye±Waller factors of these compounds.

2. Lattice dynamics of the caesium chloride lattice

The caesium chloride lattice is a body-centered cubic lattice,

with cations at the corners 000 and anions at the body-

centered positions 1
2

1
2

1
2 of the simple cubic lattice. Each atom

may be viewed as at the center of a cube of atoms of the

opposite kind, so that the number of nearest neighbors or

coordination number is eight. The caesium chloride lattice

differs from the sodium chloride lattice mostly in the second-

nearest-neighbor distances. For an ideal caesium chloride

lattice, the ratio between the second-nearest-neighbor

distance and the ®rst-nearest-neighbor distance is 1.154, which

is only about 82% that of an ideal sodium chloride lattice. An

important consequence of this structural difference between

these two lattices is that in the case of the caesium chloride

lattice we need to consider the interactions between second-

nearest neighbors for both the cations and the anions, while

for the sodium chloride lattice we need only to consider the

interactions between the second-nearest neighbors for anions.

Shown in Fig. 1 is a schematic diagram of the shell model we

used in this paper.

Theoretical treatments of the lattice dynamics of crystals

with the caesium chloride structure have been discussed by

several authors. In particular, the rigid-ion model was inves-

tigated by Ganesan & Srinivasan (1963). The shell model,

which was originally introduced by Dick & Overhauser (1958)

for alkali halides, was ®rstly formulated for the CsCl structure

by Cowley & Okazaki (1967). This shell model was later

modi®ed by Mahler & Engelhardt (1971) to include a

breathing term, and dispersion curves of the caesium halide

were calculated. Crystals with the caesium chloride structure

generally exhibit a complex dielectric behavior resulting from

the high polarizability of the constituent ions. A careful

analysis of high-frequency dielectric constants assuming

additive ionic polarizabilities suggests that the electronic

polarizabilities of the positive ion and the negative ion are of
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the same order of magnitude. In our theoretical model, we

consider, therefore, that both types of ions are polarizable, i.e.

the spring constants k1 and k2 connecting the ions and the

outer electronic shells (see Fig. 1) are both ®nite.

Under the harmonic, adiabatic and electrostatic approxi-

mations, the equations of motion for the shell model can be

written in a compact matrix form

M!2u � �R� ZCZ�u� �T� ZCY�w
0 � �TT � YCZ�u� �S� K� YCY�w;

)
�1�

where M, Z, Y and K are 6 � 6 diagonal matrices representing

the ion masses, the ion charges, the shell charges and the core±

shell coupling constants, respectively. The short-range inter-

actions include core±core, core±shell and shell±shell interac-

tions and are given by 6 � 6 matrices R, T, S, respectively,

while C speci®es the long-range Coulomb interactions that

may be calculated using the dimensionless coef®cients ®rst

given by Kellermann (1940) for the sodium chloride lattice, u
is a six-dimensional vector specifying the core displacement

components along the x; y; z directions and for the two types

of ions (denoted by superscripts 1 and 2), and w is another six-

dimensional vector specifying the relative displacement

components of the shells with respect to their corresponding

ions along the x; y; z directions and for the two types of ions

(also denoted by superscripts 1 and 2). To reduce the number

of ®tting parameters, we follow Cowley & Okazaki (1967) and

assume that the next-nearest-neighbor forces act through the

shells and the forces are axially symmetric at all wave vectors.

Under these assumptions, elements of the matrices are given,

in units of e2=V, by

R11
xx � 4

3 �A12 � 2B12� � A11 � 2B11 ÿ A11 cos 2qxr0

ÿ B11�cos 2qyr0 � cos 2qzr0�
R22

xx � 4
3 �A12 � 2B12� � A22 � 2B22 ÿ A22 cos 2qxr0

ÿ B22�cos 2qyr0 � cos 2qzr0�
R12

xx � R21
xx � ÿ 4

3 �A12 � 2B12� cos qxr0 cos qyr0 cos qzr0

R11
xy � R22

xy � 0

R12
xy � R21

xy � 4
3 �A12 ÿ B12� sin qxr0 sin qyr0 cos qzr0

T12
xy � TR12

xy

S12
xx � �SR12

xx

S12
xy � �SSR12

xy;

�2�

where q � �qx; qy; qz� is the wavevector, e is the electron

charge, V is the volume of the cubic unit cell, T , �S and S

are ratios between different force constants, and A12, B12, A11,

B11, A22 and B22 represent short-range force parameters. The

indices 1 and 2, referring to cation and anion, respectively,

imply that the model includes the effects of short-range

interactions between both negative ions and positive ions

(second-nearest neighbors) as well as ®rst-nearest neighbours.

All other elements of the matrices may be obtained readily

by applying symmetry permutations. For example, Ryy and

Rzz may be obtained from the symmetry relation

Ryy � Rzz � Rxx, and similarly Ryz and Rzx may be obtained

from the symmetry relation Ryz � Rzx � Rxy. It should also

be noted that all matrices are symmetric, for example

Rxy � Ryx and Sxy � Syx.

In this work, we studied two shell models (SMs). In the ®rst

SM, we considered the full implementation of the above

expressions for the matrices R, S and T, while in the second

SM the ®tting parameters were reduced by letting R � T � S,

i.e. T � �S � S � 1 for all wave vectors. Physically, these

constraints mean that all short-range forces between ions act

entirely through the shell. The ®rst SM amounts to 14 adjus-

table parameters, while the second amounts to 11 adjustable

parameters.

3. Debye±Waller factors of a cubic lattice

For a given set of adjustable model parameters, the equation

of motion (1) may be solved, giving six solutions of ! and u for

a given wavevector q. These solutions are indexed by phonon

mode index q j, � j � 1; 2; 3; 4; 5; 6�. For compounds with the

caesium chloride structure, since the crystal lattice is a cubic

lattice, the Debye±Waller factors are isotropic under the

harmonic approximation. For each atom k (k � 1; 2 for cation

and anion) in the unit cell, the Debye±Waller factor is

presented as B�k� and at a ®xed temperature this factor is

given by

B�k� � 8�2

3mkN

X
q j

E

!2

� �
q j

uk�q j��� ��2; �3�

where Eq j is the mean energy of the phonon in the mode �q j�:
Eq j � h- !q j�nq j � 1=2�;

and nq j is the mean occupation number of the mode and is

given by the Bose±Einstein distribution

nq j � �exp�h- !q j=kBT� ÿ 1�ÿ1;

Figure 1
Schematic diagram showing the interactions between cations and anions
for a caesium chloride lattice. The solid arrows represent the ®rst-nearest-
neighbor interactions A12 and B12, where the subscripts 1 and 2 represent
cation and anion, respectively, and A and B denote the radial and
tangential force constants, respectively. The dashed arrows represent the
second-nearest-neighbor interactions A11 and B11 (between cations), and
A22 and B22 (between anions). k1 and k2 are the core±shell coupling
constants of cations and anions, respectively.



!q j is the frequency of the phonon, uk�q j� is the

complex displacement eigenvector, mk is the

mass of the kth atom and N is the number of

wavevectors in the summation over the Brillouin

zone. In performing the summation over phonon

modes, particular attention should be paid to the

so-called `zerophonon' term, as ®rst pointed out

by Buyers & Smith (1968), which results from

singularities due to phonon branches with

!�q � 0; j� � 0. In this work, numerical

summation is performed using the computer

routine developed by Reid (1987).

4. Results and discussion

The two shell models we investigated use 11

parameters (A12, B12, A11, B11, A22, B22, Z, Y1, Y2,

k1, k2) and 14 parameters (A12, B12, A11, B11, A22,

B22, Z, Y1, Y2, k1, k2, T , S, �S), respectively. The

adjustable parameters are determined by ®tting

the measured phonon frequencies in high-

symmetry directions with model calculations. In

our program, the ®tting is performed using the

combination of the standard multidimensional

downhill simplex method and the simulated-

annealing method (Press et al., 1986). The

goodness of ®t between the measured and

calculated phonon-dispersion curves is given by

an error indicator �, which is de®ned as follows:

� � �M ÿ K�ÿ1
PM
i�1

�!i
exp ÿ !i

mod�2; �4�

where M is the number of experimental data, K

is the number of adjustable parameters, !exp is

the experimental frequency and !mod is the

model frequency for a particular point on the
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Table 1
Model parameters.

(a) 11-parameter SM

Crystal
A12

(e=V)
B12

(e=V)
A11

(e=V)
B11

(e=V)
A22

(e=V)
B22

(e=V)
Z
(e)

K1

(e=V)
K2

(e=V)
Y1

(e)
Y2

(e) �

CsCl 7.832 ÿ0.258 0.793 ÿ0.165 0.651 ÿ0.154 0.820 302.9 453.1 ÿ2.657 ÿ3.972 0.0016
CsBr 8.135 ÿ0.656 0.994 ÿ0.194 0.951 ÿ0.052 0.786 168.8 424.9 ÿ0.402 ÿ2.682 0.0018
CsI 8.522 ÿ0.528 1.191 ÿ0.265 0.172 0.099 0.921 217.1 148.7 1.930 ÿ2.238 0.0021
TlCl 7.890 ÿ0.879 ÿ0.293 0.055 1.411 ÿ0.060 0.864 52.3 501.6 ÿ1.294 ÿ4.086 0.0037
TlBr 8.006 ÿ0.956 ÿ0.520 0.0004 1.767 ÿ0.132 0.854 52.8 493.5 ÿ1.093 ÿ4.250 0.0021

(b) 14-parameter SM

Crystal
A12

�e=V�
B12

�e=V�
A11

�e=V�
B11

�e=V�
A22

�e=V�
B22

�e=V�
Z
�e�

K1

�e=V�
K2

�e=V�
Y1

�e�
Y2

�e� T S S0=R0 �

CsCl 7.936 ÿ0.384 1.156 ÿ0.146 0.675 ÿ0.186 0.776 153.1 880.6 ÿ1.762 ÿ4.850 0.698 1.210 ÿ4.525 0.0014
CsBr 8.161 ÿ0.667 0.775 ÿ0.157 0.967 ÿ0.066 0.799 181.4 451.9 ÿ0.255 ÿ2.879 1.051 0.748 1.226 0.0017
CsI 8.505 ÿ0.507 1.048 ÿ0.227 0.191 0.082 0.921 195.9 155.6 1.692 ÿ2.302 0.897 1.694 2.520 0.0021
TlCl 8.377 ÿ0.973 ÿ0.436 0.099 1.586 ÿ0.069 0.886 39.4 528.5 ÿ0.990 ÿ4.023 1.014 1.510 2.018 0.0035
TlBr 8.016 ÿ0.981 ÿ0.548 0.005 1.793 ÿ0.135 0.848 52.6 536.3 ÿ1.096 ÿ4.275 0.991 0.997 1.672 0.0020

Table 2
Elastic constants (1012 dyn cmÿ2).

11-parameter SM 14-parameter SM

Crystal C11 C12 C44 C11 C12 C44

CsCl 0.4166 0.1042 0.1105 0.4125 0.1373 0.1140
CsBr 0.3391 0.1366 0.0876 0.3362 0.1336 0.0865
CsI 0.2934 0.0681 0.0644 0.2905 0.0659 0.0654
TlCl 0.5038 0.1869 0.1066 0.5253 0.2174 0.1159
TlBr 0.4455 0.1892 0.0893 0.4411 0.1955 0.0897

Figure 2
Experimental and calculated phonon-dispersion curves for a CsCl crystal. The
calculations were made using the 11-parameter SM (solid curve) and the 14-parameter
SM (dotted curve), and the experimental phonon-dispersion curves were measured at
78 K by Ahmad et al. (1972).
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phonon-dispersion curves. Given in Tables 1(a) and 1(b) are

the model parameters for the two SMs we investigated, i.e. the

11-parameter SM and the 14-parameter SM. The model

parameters were determined by ®tting calculated phonon-

dispersion curves to those experimentally measured curves,

and the experimental phonon-dispersion curves used in our

®tting were obtained from references for (a) CsCl (Ahmad et

al., 1972); (b) CsBr (Rolandson & Raunio, 1971); (c) CsI

(BuÈ hrer & HaÈ lg, 1971); (d) TlCl (Fujii et al., 1978)

and (e) TlBr (Cowley & Okazaki, 1967). For

further comparison, we also list in Table 2 the

calculated elastic constants using the two SMs.

From the error indicator listed in Table 1, it is

seen that for most of the compounds the 14-

parameter SM provides a better description of the

phonon-dispersion curves than the 11-parameter

SM. Shown in Fig. 2 are experimentally measured

and calculated phonon-dispersion curves for a

CsCl crystal using the 11-parameter SM and the

14-parameter SM. The ®gure shows that both

SMs reproduce excellently most features of the

phonon-dispersion curves.

The Debye±Waller factors were calculated

numerically using (3) over the temperature range

from 1 to 1000 K. For all the compounds, it was

found that the temperature dependence of the

Debye±Waller factor is rather smooth and the

curves of B�T�may be ®tted analytically using the

polynomial regression form

B�T� � a0 � a1T � a2T2 � a3T3 � a4T4; �5�
where T is measured in kelvin, B is given in A2

and ai are ®tting parameters. For all ®ve

compounds with the caesium chloride structure,

the ®tting parameters are given in Tables 3 and 4

Table 3
Polynomial regression form-®tting parameters of the Debye±Waller factors calculated using the 11-parameter shell model.

(a) 0±80 K

Crystal Atom a0 a1 a2 a3 a4 ME (%)

CsCl Cs 0.19200 ÿ9.32891Eÿ4 1.24655Eÿ4 ÿ1.09899Eÿ6 3.72778Eÿ9 0.52
Cl 0.35291 7.61576Eÿ5 3.20808Eÿ5 1.43255Eÿ7 ÿ1.64323Eÿ9 0.04

CsBr Cs 0.20343 ÿ9.21443Eÿ4 1.54253Eÿ4 ÿ1.50007Eÿ6 5.67996Eÿ9 0.45
Br 0.24988 ÿ4.28096Eÿ4 9.70985Eÿ5 ÿ6.16537Eÿ7 1.26817Eÿ9 0.19

CsI Cs 0.21257 ÿ8.97273Eÿ4 1.76420Eÿ4 ÿ1.79416Eÿ6 7.08823Eÿ9 0.39
I 0.21701 ÿ8.53885Eÿ4 1.65725Eÿ4 ÿ1.60810Eÿ6 6.06843Eÿ9 0.37

TlCl Tl 0.19770 ÿ7.60460Eÿ4 3.12840Eÿ4 ÿ3.98796Eÿ6 1.87507Eÿ8 0.91
Cl 0.37889 1.17940Eÿ4 3.01218Eÿ5 3.55468Eÿ7 ÿ3.20722Eÿ9 0.13

TlBr Tl 0.19771 ÿ0.00111 2.99872Eÿ4 ÿ3.75750Eÿ6 1.74420Eÿ8 0.71
Br 0.25854 ÿ4.72016Eÿ4 1.04919Eÿ4 ÿ6.66251Eÿ7 1.32453Eÿ9 0.28

(b) 80±1000 K

Crystal Atom a0 a1 a2 a3 a4 ME (%)

CsCl Cs 0.04602 0.00567 7.00518Eÿ7 ÿ7.67034Eÿ10 3.01533Eÿ13 0.31
Cl 0.16333 0.00485 2.40028Eÿ6 ÿ2.60727Eÿ9 1.01869Eÿ12 0.88

CsBr Cs 0.04348 0.00665 6.22486Eÿ7 ÿ6.68495Eÿ10 2.58682Eÿ13 0.43
Br 0.07168 0.00615 1.02629Eÿ6 ÿ1.10544Eÿ9 4.29313Eÿ13 0.66

CsI Cs 0.04607 0.00737 6.97347Eÿ7 ÿ7.60489Eÿ10 2.97656Eÿ13 0.29
I 0.04834 0.00725 7.34509Eÿ7 ÿ8.02746Eÿ10 3.14886Eÿ13 0.31

TlCl Tl 0.03024 0.01038 4.65718Eÿ7 ÿ5.11275Eÿ10 2.01124Eÿ13 0.13
Cl 0.16442 0.00560 2.42881Eÿ6 ÿ2.64152Eÿ9 1.03301Eÿ12 0.83

TlBr Tl 0.03020 0.00980 4.61384Eÿ7 ÿ5.04827Eÿ10 1.98156Eÿ13 0.17
Br 0.07582 0.00651 1.15017Eÿ6 ÿ1.25866Eÿ9 4.94321Eÿ13 0.37

Figure 3
Experimental and calculated Debye±Waller factors for Cs1� and Cl1ÿ ions of a CsCl
crystal. The calculated Debye±Waller factors were based on ®tting experimental
phonon-dispersion curves measured at 78 and 298 K, respectively. The experimental
room-temperature Debye±Waller factors denoted by circle error bars were taken from
Barnea & Post (1966) and those denoted by diamond error bars were taken from Butt et
al. (1993).



for different models, together with a maximum-error (ME)

indicator for the ®t:

ME � max
B�i� ÿ B

�i�
fit

�B�i� � B
�i�
fit�=2

; i � 1; . . .

( )
� 100%: �6�

Tables 3 and 4 show that the analytical ®t is excellent for all the

compounds with ME being less than 1%.

We have also compared our calculated Debye±Waller

factors to available experimental room-temperature Debye±

Waller factors for compounds with the caesium chloride

structure (Butt et al., 1993). For all the compounds (except

TlBr), Debye±Waller factors for both the cation and the anion

are given in Table 5, together with an average B factor, de®ned

by

B � m�B� �mÿBÿ

m� �mÿ
; �7�

where the superscripts � and ÿ denote positive (cation) and

negative (anion) ions, respectively, and m refers to the mass of

the corresponding ions. Table 5 shows that, for most of the

compounds, the difference between the experiment and

calculated mean B factors is less than 10%.

It should be noted that our present results are based on a

harmonic model, which was utilized in both lattice dynamics

calculations and evaluations of Debye±Waller factors. Since

we did not consider the anharmonic effects in our model

explicitly, our results at high temperatures may only be

regarded as extrapolated values from harmonic results, which

are known to be accurate only at low temperature. Shown

in Fig. 3 are calculated curves of the Debye±Waller factor

for CsCl and experimentally measured room-temperature

Debye±Waller factors from two sources (Barnea & Post, 1966;

Butt et al., 1993). The calculations were based on two sets of

experimental phonon-dispersion curves, measured at 78 and

298 K, respectively (Ahmad et al., 1972). For an ideal

harmonic situation, the force constants (or our model param-

eters A12, B12 etc.) would be independent of the temperature.

Fig. 3 shows, however, that the calculated Debye±Waller

factors and SM force constants are indeed dependent on the
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Table 4
Polynomial regression form-®tting parameters of the Debye±Waller factors calculated using the 14-parameter shell model.

(a) 0±80 K

Crystal Atom a0 a1 a2 a3 a4 ME (%)

CsCl Cs 0.19036 ÿ9.10016Eÿ4 1.22707Eÿ4 ÿ1.08235Eÿ6 3.68061Eÿ9 0.50
Cl 0.35030 6.39211Eÿ5 3.31992Eÿ5 1.17168Eÿ7 ÿ1.50137Eÿ9 0.05

CsBr Cs 0.20417 ÿ9.20228Eÿ4 1.54877Eÿ4 ÿ1.50202Eÿ6 5.66455Eÿ9 0.46
Br 0.24995 ÿ4.19446Eÿ4 9.76084Eÿ5 ÿ6.24174Eÿ7 1.30696Eÿ9 0.19

CsI Cs 0.21434 ÿ9.33589Eÿ4 1.79157Eÿ4 ÿ1.82167Eÿ6 7.18631Eÿ9 0.41
I 0.21745 ÿ8.76931Eÿ4 1.67403Eÿ4 ÿ1.63431Eÿ6 6.20733Eÿ9 0.39

TlCl Tl 0.20095 ÿ7.99987Eÿ4 3.24559Eÿ4 ÿ4.15866Eÿ6 1.96232Eÿ8 0.97
Cl 0.37477 1.09621Eÿ4 2.56619Eÿ5 4.13366Eÿ7 ÿ3.49634Eÿ9 0.14

TlBr Tl 0.19805 ÿ0.00109 2.99804Eÿ4 ÿ3.75322Eÿ6 1.74123Eÿ8 0.73
Br 0.25893 ÿ4.81267Eÿ4 1.06923Eÿ4 ÿ6.99310Eÿ7 1.50929Eÿ9 0.26

(b) 80±1000 K

Crystal Atom a0 a1 a2 a3 a4 ME (%)

CsCl Cs 0.04587 0.00560 6.93610Eÿ7 ÿ7.57098Eÿ10 2.96719Eÿ13 0.33
Cl 0.16295 0.00481 2.39007Eÿ6 ÿ2.59405Eÿ9 1.01270Eÿ12 0.82

CsBr Cs 0.04346 0.00669 6.19356Eÿ7 ÿ6.64832Eÿ10 2.57440Eÿ13 0.43
Br 0.07132 0.00617 1.00875Eÿ6 ÿ1.08079Eÿ9 4.17783Eÿ13 0.76

CsI Cs 0.04624 0.00745 7.06922Eÿ7 ÿ7.74571Eÿ10 3.04329Eÿ13 0.23
I 0.04840 0.00727 7.41666Eÿ7 ÿ8.12946Eÿ10 3.19430Eÿ13 0.29

TlCl Tl 0.03036 0.01067 4.72673Eÿ7 ÿ5.22856Eÿ10 2.07256Eÿ13 0.13
Cl 0.16407 0.00541 2.42180Eÿ6 ÿ2.63348Eÿ9 1.02966Eÿ12 0.87

TlBr Tl 0.03032 0.00983 4.66100Eÿ7 ÿ5.11821Eÿ10 2.01608Eÿ13 0.10
Br 0.07580 0.00654 1.14901Eÿ6 ÿ1.25640Eÿ9 4.93055Eÿ13 0.49

Table 5
Experimental and calculated Debye±Waller B factors (room temperature).

Experimental 11p-SM 14p-SM

Crystal B� Bÿ B B� Bÿ B B� Bÿ B

CsCl 1.83 (2) 1.89 (5) 1.84 (5) 1.71 1.70 1.71 1.73 1.72 1.73
CsBr 2.00 (9) 2.24 (12) 2.09 (15) 2.03 1.94 2.00 2.04 1.94 2.00
CsI 2.17 (11) 2.19 (12) 2.24 (16) 2.25 2.22 2.24 2.27 2.23 2.25
TlBr ± ± ± 2.93 2.05 2.68 2.94 2.07 2.70
TlCl 3.28 (7) 2.00 (7) 3.10 (10) 3.10 1.96 2.93 3.19 1.90 3.00
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temperatures at which the phonon-dispersion curves were

measured. We expect that this discrepancy between the two

calculated curves of Debye±Waller factors results mainly from

the anharmonic effects, and that the anharmonic effects will

become more important at higher temperatures. Fig. 3 shows,

nevertheless, that at room temperature the discrepancy

between the two sets of calculated Debye±Waller factors is of

the same order of magnitude as the experimental error bars,

and that the curve based on phonon-dispersion curves

measured at 298 K seems to agree with experimentally

measured room-temperature Debye±Waller factors better

than that at 78 K. This may suggest that effectively some of the

anharmonic effects have been included in our model derived

from experimental phonon-dispersion curves measured at

298 K. In any case, the higher-temperature Debye±Waller

factors should not be regarded as accurate and should be used

only as an estimate of the true anharmonic temperature factor.

5. Concluding remarks

Temperature-dependent Debye±Waller factors have been

calculated for several compounds with the caesium chloride

structure for the temperature range from 1 to 1000 K and the

resulting B�T� functions have been ®tted analytically using the

polynomial regression form. The room-temperature (293 K)

values of the Debye±Waller factors are compared to existing

experimental values, and for most of the compounds the

agreement between the experimental and calculated values is

better than 10%.
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